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hisdml @ the LHC

* hlsdml is a library for automatic translation of deep learning models to FPGA
firmware for inference with ulira low latency

* First target applications:
hardware trigger of LHC experiments and detector front-end electronics

J. Krupa’s talk
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A 2ier event filter reduces data rates by ~4 orders of magnitude
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* hlsdml is a library for automatic translation of deep learning models to FPGA
firmware for inference with ulira low latency

* First target applications:
hardware trigger of LHC experiments and detector front-end electronics
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J. Krupa’s talk: accelerate DL using co-processors (GPUs or FPGAs)
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hisdml @ the LHC

* hlsdml is a library for automatic translation of deep learning models to FPGA
firmware for inference with ulira low latency

* First target applications:
hardware trigger of LHC experiments and detector front-end electronics
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THIS TALK! Limited resources and strict latency constraints
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Bring DL to FPGA for L1 trigger with
high level synthesis for machine learning
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https://fastmachinelearning.org/hls4ml/

Bring DL to FPGA for L1 trigger with
high level synthesis for machine learning

* User-friendly automated tool
* Easy to tune the inference performance for your specific application:
precision, resource vs latency/throughput tradeoff

* Can be used as API
* Includes several debugging utilities
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his4ml: recent developments

* Since CPAD19 but the library has been significantly expanded!

* Quantization-aware training and pruning

- Google QKeras [arxiv.2006.10159] THIS TALK!

- PyTorch Brevitas [arxiv.2102.11289] —> coming soon

e Convolutional neural networks [axiv.2101.05108]

* Custom architectures as graph neural networks:
THIS TALK!

- GarNet/GravNet for calorimeter reconstruction [arXiv: 2008.03601]

- Interaction networks for tracking [arxiv.2012.01563]

e Workflow for DL-dedicated ASICs [axiv.2103.05579] + J. Hirschauer talk

* Support for other vendors: Intel and Mentor HLS == coming soon


https://agenda.hep.wisc.edu/event/1391/contributions/6994/
https://arxiv.org/abs/2006.10159
https://arxiv.org/abs/2102.11289
https://arxiv.org/abs/2101.05108
https://arxiv.org/abs/2008.03601
https://arxiv.org/abs/2012.01563
https://arxiv.org/abs/2103.05579
https://indico.fnal.gov/event/46746/contributions/210450/

Neural network inference on FPGA

Neural netwi)rk inference » Efficient implementation on FPGA uses

- DIGITAL SIGNAL PROCESSORS
matrix multiplication
There are about 5-10k DSPs in
- Q modern FPGAs!

i (Wi X iq) + (W X 1y)]
Wiz W2 |- ’l;] = |(Wi2X iy) + (WX i3)
/ (W13 X iy) + (Wos X ip)

* DSPs are the most precious resource when mapping a NN into FPGAI
* Usage can be controlled in hls4ml by tuning how much to parallelize

— this affects the latency and it’s a trade off that depends on the application



Efficient NN design: quantization

* Post-training quantization on FPGA allows for ap_fixed< ! >
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Efficient NN design: compression

* Neural Network compression is a widespread technique to reduce the size, energy
consumption, and overtraining of deep neural networks

* Several approaches in literature [arxiv.1510.00149, arxiv.1712.01312, arxiv.1405.3866, arxiv.1602.07576,
doi:10.1145/1150402.1150464]
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Efficient NN design with QKeras

* QKeras is a library developed and maintained by
Google to train models with quantization in the
training

* Can achieve good performance with very few bits

* We've recently added support for QKeras-trained
models to hls4ml [arxiv.2006.10159]

- the number of bits used in training is also used in
inference

- automatic heterogenous layer-by-layer quantization
also possible
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https://arxiv.org/abs/2006.10159

Fast convolutional neural networks

* Brand new implementation based on streaming h1s::stream<T>
arxiv.2101.05108

- collect data from input pixels until we can compute one output (FIFOs)
- compute the value of output pixel with a single call to matrix-vector multiplication

- can reuse existing matrix-vector multiplication used for fully connected layers

Stream in Pixel
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Our usual dense layer code
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https://arxiv.org/abs/2101.05108

Fast convolutional neural networks
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Fast convolutional neural networks

arx1v.2101.05108
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https://arxiv.org/abs/2101.05108

Signal Eff.

hls4ml for triggering @ 40 MHz

* his4ml enabled developments of new trigger algorithms with large gain for physics!

- replace standard cut-based algorithms
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https://cds.cern.ch/record/2714892/files/CMS-TDR-021.pdf

hls4ml for triggering @ 40 MHz

* his4ml enabled developments of new trigger algorithms with large gain for physics!

- replace standard cut-based algorithms

- improve physics objects reconstruction
(muons, taus, jets)
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hls4ml for triggering @ 40 MHz

* his4ml enabled developments of new trigger algorithms with large gain for physics!

- replace standard cut-based algorithms
Encoder Decoder

- improve physics objects reconstruction
(muons, taus, jets)

- develop new strategies like anomaly detection = i o

with autoencoders for signal-agnostic triggering
Reshape

AveragePooling2D

BatchNormalization

UpSampling2D

21 inputs: pt/n/® of 4 e/y, 4 y, 10 jets, and MET
— input 19x3 input image

Activation Conv2D

Flatten BatchNormalization

300 ns latency

30% DSPS Activation
]O% FFS Activation —
[actlvatuon_3 J
30% LUTs

K. Govorkova @ Fast Machine Learning workshop 20
with no pruning/quantization! o



https://indico.cern.ch/event/924283/contributions/4105192/

hls4ml for triggering @ 40 MHz

* his4ml enabled developments of new trigger algorithms with large gain for physics!

- replace standard cut-based algorithms

- improve physics objects reconstruction
(muons, taus, jets)

- develop new strategies like anomaly detection

with autoencoders for signal-agnostic triggering Frontiers in Bie Data 3 (2021) 44
. . GarNets
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19


https://indico.cern.ch/event/831165/contributions/3758961/
https://arxiv.org/abs/2012.01563
https://www.frontiersin.org/articles/10.3389/fdata.2020.598927/full

Summary

* his4ml enables automatic translation of modern deep learning architectures to
synthesizable FPGA firmware and more

- today presented most recent developments

* Presented applications for the hardware trigger at LHC experiments but many others
ongoing beyond LHC

- eg, accelerator controls = see C. Herwig talk

- other cases being identified with common challenges (eg., large scale LArTPC
experiments or gravitational waves detection)

*The library is also expanding beyond FPGAs

- see J. Hirschavuer talk on the application of hls4ml to achieve DL-dedicated ASICs design
for CMS high-granularity calorimeter (and our recent paper arxiv.2103.05579)

* Very active developers team... stay tuned for new features and applications!
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high level synthesis for machine learning

For more info:

hitps://tastmachinelearning.org/hls4ml/

Fast inference of deep neural networks in FPGAs for particle physics [JINST 13 P07027 (2018)]
Fast inference of Boosted Decision Trees in FPGAs for particle physics [JINST 15 P05026 (2020)]
Compressing deep neural networks on FPGAs to binary and
ternary precision with HLS4ML [2020 Mach. Learn.: Sci. Technol]

Automatic deep heterogeneous quantization of Deep Neural Networks for ultra low-area, low-
latency inference on the edge at particle colliders [arxiv.2006.10159]
Distance-Weighted Graph Neural Networks on FPGAs for Real-Time
Particle Reconstruction in High Energy Physics [arxiv.2008.03601]

Fast convolutional neural networks on FPGAs with hls4ml [arxiv.2101.05108]
Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs [arxiv.2012.01563]
hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine
Learning Devices [arxiv.2103.05579]

Thank you!
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